1.22. Сколькими способами можно выставить на игру футбольную команду, состоящую из трех нападающих, трех полузащитников, четырех защитников и вратаря, если всего в команде 6 нападающих, 3 полузащитника, 6 защитников и 1 вратарь?
2.22. Из пяти карточек с буквами «а», «б», «в», «г», «д» наугад одну за другой выбирают две и располагают их в порядке извлечения. Каков вероятность того, что получится слово «да»?
3.22. В коробках находятся детали: в первой – 20, из них 13 стандартных; во второй – 30, из них 26 стандартных. Из каждой коробки наугад берут по одной детали. Найти вероятность того, что:
а) обе детали окажутся нестандартными;
б) одна деталь нестандартная;
в) обе детали стандартные.
4.22. Пассажир может обратиться за получением билета в одну из трех касс вокзала А или в одну из пяти касс вокзала В. Вероятность того, что к моменту прихода пассажира в кассах вокзала
А имеются в продаже билеты, равна 0,6, в кассах вокзала В – 0,5.
а) Найти вероятность того, что в наугад выбранной кассе имеется в продаже билет.
б) Пассажир купил билет. В кассе какого вокзала он вероятнее всего куплен?
5.22. Вероятность перевыполнения годового плана для каждого из восьми рабочих равна 0,8. Найти вероятность того, что перевыполнят годовой план:
а) хотя бы один рабочий;
б) двое рабочих;
в) трое рабочих.
6.22. Вероятность того, что изделие – высшего сорта, равна 0,5. Найти вероятность того, что из 1000 изделий 500 – высшего сорта.
7.22. Найти закон распределения указанной дискретной СВ Х и ее функцию распределения F (x). Вычислить математическое ожидание M (X), дисперсию D (Х) и среднее квадратическое отклонение σ(Х). Построить график функции распределения F (x). Вероятность выхода из строя каждого из трех блоков прибора в течении гарантийного срока равна 0,3; СВ Х – число блоков, вышедших из строя в течение гарантийного срока.
8.22. Дана функция распределения F (x) СВ Х. Найти плотность распределения вероятностей f (x), математическое ожидание M (X), дисперсию D (X) и вероятность попадания СВ Х на отрезок [a;b]. Построить графики функций F (x) и f (x).
9.22. Диаметр подшипников, изготовленных на заводе, представляет собой случайную величину, распределенную нормально с математическим ожиданием 1,5 см и средним квадратичным отклонением 0,04 см. Найти вероятность того, что размер наугад взятого подшипника колеблются от 1 до 2 см.
10.22. Принимая вероятность вызревания кукурузного стебля с тремя початками равной 0,75, оценить с помощью неравенства Чебышева вероятность того, что среди 3000 стеблей опытного участка таких стеблей будет от 2190 до 2310 включительно.